
https://www.redhat.com/sysadmin/linux-file-permissions-explained 1/9

File permissions are core to the security model used by Linux systems.
They determine who can access files and directories on a system and
how. This article provides an overview of Linux file permissions, how
they work, and how to change them.

How do you view Linux file permissions?

The ls command along with its -l (for long listing) option will show
you metadata about your Linux files, including the permissions set on
the file.

$ ls -l

drwxr-xr-x. 4 root root 68 Jun 13 20:25 tuned
-rw-r--r--. 1 root root 4017 Feb 24 2022 vimrc

In this example, you see two different listings. The first field of the ls -
l output is a group of metadata that includes the permissions on each
file. Here are the components of the vimrc listing:

File type: -

Permission settings: rw-r--r--

Extended attributes: dot (.)

User owner: root

Group owner: root

The fields "File type" and "Extended attributes" are outside the scope
of this article, but in the featured output above, the vimrc file is a
normal file, which is file type - (that is, no special type).

Posted: January 10, 2023 Scott McBrien

Linux file permissions explained

4/30/23, 9:28 AM Linux file permissions explained | Enable Sysadmin

https://www.redhat.com/sysadmin/linux-file-permissions-explained 2/9

The tuned listing is for a d, or directory, type file. There are other file
types as well, but these two are the most common. Available attributes
are dependent on the filesystem format that the files are stored on. For
Red Hat Enterprise Linux 7, 8, and 9, the default filesystem format is
XFS.

Skip to the bottom of list

Great Linux resources

Advanced Linux commands cheat sheet

Download RHEL 9 at no charge through the Red Hat
Developer program

A guide to installing applications on Linux

Linux system administration skills assessment

How well do you know Linux? Take a quiz and get a badge

How do you read file permissions?

This article is about the permission settings on a file. The interesting
permissions from the vimrc listing are:

rw-r--r–

This string is actually an expression of three different sets of
permissions:

rw-

r--

r--

The first set of permissions applies to the owner of the file. The second
set of permissions applies to the user group that owns the file. The
third set of permissions is generally referred to as "others." All Linux
files belong to an owner and a group.

https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux?intcmp=701f20000012ngPAAQ
https://developers.redhat.com/cheat-sheets/advanced-linux-commands/?intcmp=701f20000012ngPAAQ
https://developers.redhat.com/products/rhel/download?intcmp=701f20000012ngPAAQ
https://opensource.com/downloads/installing-linux-applications-ebook?intcmp=701f20000012ngPAAQ
https://rhtapps.redhat.com/assessment/?intcmp=701f20000012ngPAAQ
https://redhatdg.co1.qualtrics.com/jfe/form/SV_bjRFSHqPdTpIjoa?intcmp=701f20000012ngPAAQ

4/30/23, 9:28 AM Linux file permissions explained | Enable Sysadmin

https://www.redhat.com/sysadmin/linux-file-permissions-explained 3/9

When permissions and users are represented by letters, that is called
symbolic mode. For users, u stands for user owner, g for group owner,
and o for others. For permissions, r stands for read, w for write, and x
for execute.

[Learn how to manage your Linux environment for success.]

When the system is looking at a file's permissions to determine what
information to provide you when you interact with a file, it runs
through a series of checks:

It first checks to see whether you are the user that owns the file. If
so, then you are granted the user owner's permissions, and no
further checks will be completed.

If you are not the user that owns the file, next your group
membership is validated to see whether you belong to the group
that matches the group owner of the file. If so, then you're covered
under the group owner field of permissions, and no further checks
will be made.

"Others" permissions are applied when the account interacting
with the file is neither the user owner nor in the group that owns
the files. Or, to put it another way, the three fields are mutually
exclusive: You can not be covered under more than one of the
fields of permission settings on a file.

Permissions go beyond the different types of people that can interact
with a file. Each user gets an expression that includes the three basic
types of permissions. In the example above, the owner of the file is
given the following permissions:

rw-

Each character in the expression indicates whether a specific
permission is granted or not. In the example above, read (r) permission
and write (w) permission have been granted on the file. However, the
execute permission (x) is not granted, which is why there's a - sign in
the expression. The permission in this field is disabled.

Consider the group owner's permissions in this example:

https://www.redhat.com/en/engage/linux-management-ebook-s-201912231121?intcmp=701f20000012ngPAAQ

4/30/23, 9:28 AM Linux file permissions explained | Enable Sysadmin

https://www.redhat.com/sysadmin/linux-file-permissions-explained 4/9

r--

The read (r) permission is granted to members of the group, but write
and execute have both been disabled.

[Keep your most commonly used commands handy with the Linux
commands cheat sheet.]

What are octal values?

When Linux file permissions are represented by numbers, it's called
numeric mode. In numeric mode, a three-digit value represents
specific file permissions (for example, 744.) These are called octal
values. The first digit is for owner permissions, the second digit is for
group permissions, and the third is for other users. Each permission
has a numeric value assigned to it:

r (read): 4

w (write): 2

x (execute): 1

In the permission value 744, the first digit corresponds to the user, the
second digit to the group, and the third digit to others. By adding up the
value of each user classification, you can find the file permissions.

For example, a file might have read, write, and execute permissions for
its owner, and only read permission for all other users. That looks like
this:

Owner: rwx = 4+2+1 = 7

Group: r-- = 4+0+0 = 4

Others: r-- = 4+0+0 = 4

The results produce the three-digit value 744.

Skip to the bottom of list

Linux security

https://developers.redhat.com/cheat-sheets/linux-commands-cheat-sheet?intcmp=701f20000012ngPAAQ

4/30/23, 9:28 AM Linux file permissions explained | Enable Sysadmin

https://www.redhat.com/sysadmin/linux-file-permissions-explained 5/9

What is security automation?

Red Hat OpenShift Service on AWS security FAQ

Enhance security with automation

Implementing DevSecOps guide

Red Hat CVE checker

What do Linux file permissions actually do?

I've talked about how to view file permissions, who they apply to, and
how to read what permissions are enabled or disabled. But what do
these permissions actually do in practice?

Read (r)

Read permission is used to access the file's contents. You can use a tool
like cat or less on the file to display the file contents. You could also
use a text editor like Vi or view on the file to display the contents of the
file. Read permission is required to make copies of a file, because you
need to access the file's contents to make a duplicate of it.

Write (w)

Write permission allows you to modify or change the contents of a file.
Write permission also allows you to use the redirect or append
operators in the shell (> or >>) to change the contents of a file. Without
write permission, changes to the file's contents are not permitted.

Execute (x)

Execute permission allows you to execute the contents of a file.
Typically, executables would be things like commands or compiled
binary applications. However, execute permission also allows someone
to run Bash shell scripts, Python programs, and a variety of interpreted
languages.

[Download now: A sysadmin's guide to Bash scripting.]

https://www.redhat.com/en/topics/automation/what-is-security-automation?intcmp=701f20000012ngPAAQ
https://www.redhat.com/en/resources/rosa-security-faq?intcmp=701f20000012ngPAAQ
https://www.redhat.com/en/engage/security-with-automation-20230412?intcmp=701f20000012ngPAAQ
https://opensource.com/downloads/guide-implementing-devsecops?intcmp=701f20000012ngPAAQ
https://access.redhat.com/labs/cvechecker?intcmp=701f20000012ngPAAQ
https://opensource.com/downloads/bash-scripting-ebook?intcmp=701f20000012ngPAAQ

4/30/23, 9:28 AM Linux file permissions explained | Enable Sysadmin

https://www.redhat.com/sysadmin/linux-file-permissions-explained 6/9

There are other ways to execute the contents of a file without execute
permission. For example, you could use an interpreter that has execute
permission to read a file with instructions for the interpreter to
execute. An example would be invoking a Bash shell script:

$ bash script.sh

The executable being run is bash. The script.sh file is read by the Bash
interpreter, and its commands are executed. The content in this article
is general purpose, but in Linux, there are often additional ways to
accomplish tasks.

Skip to the bottom of list
Image

Download now

How do directory permissions work?

Directory file types are indicated with d. Conceptually, permissions
operate the same way, but directories interpret these operations
differently.

Read (r)

Like regular files, this permission allows you to read the contents of the
directory. However, that means that you can view the contents (or files)
stored within the directory. This permission is required to have things
like the ls command work.

https://opensource.com/downloads/linux-command-replacements?intcmp=701f20000012ngPAAQ
https://www.redhat.com/en/engage/system-administrator-guide-s-202107300146?intcmp=701f20000012ngPAAQ
https://www.redhat.com/en/engage/system-administrator-guide-s-202107300146?intcmp=701f20000012ngPAAQ

4/30/23, 9:28 AM Linux file permissions explained | Enable Sysadmin

https://www.redhat.com/sysadmin/linux-file-permissions-explained 7/9

Write (w)

As with regular files, this allows someone to modify the contents of the
directory. When you are changing the contents of the directory, you are
either adding files to the directory or removing files from the directory.
As such, you must have write permission on a directory to move (mv) or
remove (rm) files from it. You also need write permission to create new
files (using touch or a file-redirect operator) or copy (cp) files into the
directory.

Execute (x)

This permission is very different on directories compared to files.
Essentially, you can think of it as providing access to the directory.
Having execute permission on a directory authorizes you to look at
extended information on files in the directory (using ls -l, for
instance) but also allows you to change your working directory (using
cd) or pass through this directory on your way to a subdirectory
underneath.

Lacking execute permission on a directory can limit the other
permissions in interesting ways. For example, how can you add a new
file to a directory (by leveraging the write permission) if you can't
access the directory's metadata to store the information for a new,
additional file? You cannot. It is for this reason that directory-type files
generally offer execute permission to one or more of the user owner,
group owner, or others.

[Want to test your sysadmin skills? Take a skills assessment today.]

How do you modify Linux file permissions?

You can modify file and directory permissions with the chmod
command, which stands for "change mode." To change file
permissions in numeric mode, you enter chmod and the octal value you
desire, such as 744, alongside the file name. To change file permissions
in symbolic mode, you enter a user class and the permissions you want
to grant them next to the file name. For example:

https://www.redhat.com/rhtapps/assessment/?intcmp=701f20000012ngPAAQ

4/30/23, 9:28 AM Linux file permissions explained | Enable Sysadmin

https://www.redhat.com/sysadmin/linux-file-permissions-explained 8/9

$ chmod ug+rwx example.txt
$ chmod o+r example2.txt

This grants read, write, and execute for the user and group, and only
read for others. In symbolic mode, chmod u represents permissions for
the user owner, chmod g represents other users in the file's group,
chmod o represents other users not in the file's group. For all users, use
chmod a.

Maybe you want to change the user owner itself. You can do that with
the chown command. Similarly, the chgrp command can be used to
change the group ownership of a file.

Skip to the bottom of list

Career advice

Take a sysadmin skills assessment

Explore training and certification options

Red Hat Certification remote exams FAQ

10 resources to make you a better communicator

How to explain modern software development in plain
English

Learning path: Getting started with Red Hat OpenShift
Service on AWS (ROSA)

What are special file permissions?

Special permissions are available for files and directories and provide
additional privileges over the standard permission sets that have been
covered.

SUID is the special permission for the user access level and always
executes as the user who owns the file, no matter who is passing
the command.

SGID allows a file to be executed as the group owner of the file; a
file created in the directory has its group ownership set to the

https://www.redhat.com/rhtapps/assessment/?intcmp=701f20000012ngPAAQ
https://www.redhat.com/en/services/training/all-courses-exams?intcmp=701f20000012ngPAAQ
https://www.redhat.com/en/resources/certification-remote-exams-FAQ?intcmp=701f20000012ngPAAQ
https://enterprisersproject.com/communication-ebook?intcmp=701f20000012ngPAAQ
https://enterprisersproject.com/explain-modern-software-development?intcmp=701f20000012ngPAAQ
https://cloud.redhat.com/learn/getting-started-red-hat-openshift-service-aws-rosa?intcmp=701f20000012ngPAAQ

4/30/23, 9:28 AM Linux file permissions explained | Enable Sysadmin

https://www.redhat.com/sysadmin/linux-file-permissions-explained 9/9

directory owner. This is helpful for directories used collaboratively
among different members of a group because all members can
access and execute new files.

The "sticky bit" is a directory-level special permission that restricts
file deletion, meaning only the file owner can remove a file within the
directory.

Want to take a deeper dive into special permissions? Read Linux
permissions: SUID, SGID, and sticky bit.

Wrapping up

Understanding Linux file permissions (how to find them, read them,
and change them) is an important part of maintaining and securing
your systems. You can learn more about file permissions for Red Hat
Enterprise Linux by checking out the documentation or by practicing
with a self-paced lab on using file permissions.

[Cheat sheet: Get a list of Linux utilities and commands for managing
servers and networks.]

Viewed using Just Read

https://www.redhat.com/sysadmin/suid-sgid-sticky-bit
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux?intcmp=701f20000012ngPAAQ
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/assembly_managing-file-permissions_configuring-basic-system-settings
https://lab.redhat.com/tracks/using-file-permissions?intcmp=701f20000012ngPAAQ
https://opensource.com/downloads/cheat-sheet-networking?intcmp=701f20000012ngPAAQ
https://justread.link/

